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ABSTRACT - I

--)In this paper, one or a series on verification of concurrent programs, ;e present proof methods
for establishing eventuality and until properties. The methods are based on well-founded ranking
and are applicable to botlr-'just" 'and "'fair -%omputations. These methods do not assume a
decrease of the rank at each computation step. It is sufficient that there exists one process which
decreases the rank when activated. Fairness then ensures that the program will eventually attain
its goal.

In the finite state case the proofs can be represented by diagrams. Several examples are given.

.......... .-.

.. . .. . ..-.. .. . .. "

7.'-

This research was supported in part by the National Science Foundation under Grants MC879-09495 and MESS0- ,

06930, by IDARPA tinder Contract - -- ,by the U~nited States Air Force Office or Scientific Research -
under Grant AVOSR-81-0014, and by the Basic |reearch Foun~dation of the |raell Aademy of Sciences.•

2".



INTRODUCTION

-In a previous report [MPI] we introduced the temporal framework for reasoning about pro-
grams. We described a model of concurrent programs which is based on interaction via shared
variables and defined the concept of fair execution of such programs. Wc then demonstrated the
application of temporal logic formalism for expressing properties of concurrent programs. Program
properties can be classified according to the syntactic form of the temporal formula expressing
them; we studied three classes of properties: invariance properties, eventuality properties and
precedence ("until") properties. Most program properties that have been previously considered or
studied for sequential and concurrent programs fall into one of these three categories.

In a second report [MP2], we developed proof principles based on temporal logic for establishing
that concurrent programs possess properties of these classes. We presented a proof method for
each class of properties.

o A single invariance principle is adequate for establishing invariance properties.

For proving eventuality properties, we recommended a chain reasoning approach, in
which we follow the possible chains of events until the desired goal is realized. Several
proof principles were introduced for establishing the basic steps in the chain. A similar
approach is presented in [OL].

o Simple precedence properties may be proved by a combination of invariance proofs and
eventuality proofs. A forthcoming report ([MP3J) will discuss proof methods for general
precedence properties.

In this paper, we present an alternative method for proving eventuality and "until" properties
based on convergence functions (well-founded rankings).

In our exposition, we assume that the reader is familiar with the basic concepts and definitions
introduced in [MPIJ and [MP2j.

THE CONVERGENCE FUNCTION APPROACH

Unlike the chain reasoning approach, which displays a variety of strategies and rules, the
convergence function approach provides a single uniform principle for proving eventualities of the
form:

(i.e., if v ever arises it must be followed by i'), as well as "until" properties of the form

(i.e., if V ever arises it must be followed by an instant at which TP is realized and between the
occurrences of jo and 0', X must hold continuously).

With respect to uniformity, the convergence function approach resembles the invariance
principle for proving invariance properties. Another common feature is that establishing the
premises to the proof rule requires only static (non-temporal) reasoning.
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Convergence functions have been used successfully in proofs of termination of sequential
programs and of rewriting systems (e.g., [M], [I)M]). Their use is based on a mapping from
the execution states of a program into a well-founded set, such that states which appear later
in a computation correspond to lower values in the set. Consequently, a complete computation
will correspond tc a descending sequence, and an infinite computation would correspond to an
infinitely descending sequence of well-founded elements, which is impossible. Such a mapping is
called a convergence function or a ranking function.

A well-founded structure (W, >-) consists of a set W and a partial order >- on W such that
any decreasing sequence wo0 >- w, • >• ... , where wi E W is finite. A typical and frequently
used well-founded structure is (N, >), where N is the set of all nonnegative integers, and > is
the usual "greater than" ordering. Obviously we cannot have an infinitely decreasing sequence of
nonnegative integers, and therefore (N, >) is indeed a well-founded structure.

A general method for deriving composite well-founded structures from simpler ones is the
formation of lexicographical orderings. Let (W 1, >- ) and (W 2 , >-2) be two well-founded structures.
Then the structure given by (W X W2 , >-L) where the lexicographic ordering >-I, is defined by

(mIM 2 ) >-I., (n1,n 2 ) 4s (mn1 >-1 ni) or (ri = n1 and M2 >-2 n 2 )

.. is also well-founded.

Let us consider the application of the classical convergence function approach to the following
concurrent program:

Example A (Program DGGD distributed gcd computation)

(Y1,Y2) :=(XIX2)

to: vhiley #V 2 do io: while y 41  do

if i > Y2 then :- Y -Y 2  if Y1 < Y2 then Y2 :-2 Y

11: halt m: halt

This program performs the distributed computation of the gcd (greatest common divisor)
of two positive integers inputs x1 ,x 2 . In the execution of this program, we assume each of the
labelled instructions to be atomic in the sense that testing and modification of the variables by one
process, say P at t o, are completed before the other process may access them. Note that when
P1 is activated in a state in which yi < Y12 it does not modify any of the variables and returns
to to, thus replicating exactly the original state. Consequently, the termination, and hence the
correctness of this program, depends very strongly on the basic assumption of fairness that we
assume throughout this work. Only under fairness would each of P1 and P2 be activated as often
as needed until convergence is achieved.

Trying to prove the convergence of this program by well-founded ranking immediately runs
into difficulties when we fail to find a mapping into a well-founded set that will decrease at every
step of the computation. No such function can exist for the above program since, as observed
earlier, some steps may preserve the state and leave the value of a state-dependent convergence

3
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function constant. This points out emphatically that any well-rounded argument may succeed only
if it takes fairness into account.

PROGRAMS AND COMPUTATIONS

For completeness we repeat some of the definitions of [MPIJ and introduce some additional
notation required here. Let P be a program consisting of m parallel processes:

:' ~P: v :--fo4l l t... lle-l.

Each process P may be represented as a transition graph with locations (nodes) labelled by elem!ents
of Li = , ... ,4). The edges in the graph are labelled by guarded commands of the form
c(y) - [:= f(y)] whose meaning is that if c(y) is true the edge may be traversed while replacing

by f(y).

Let t, 1, - ,1I E L; be locations in process Pi:

ci(y) -- [: f.(y)

We define Ej(y) =cj(y) V ... v ck(y) to be the exit condition at node t. Locations in the
program can be classified according to their exit conditions.

* A location is regular if Et true. This is the case with locations such that the set of
conditions labeling their outgoing transitions is exhaustive in the sense that for every
possible value of y at least one transition is enabled. The only irregular locations are
terminal locations and semaphore locations discussed next.

* A location is terminal if re = false. This is the cas~e with locations labeling halt
instructions which have no outgoing transitions. In our model we usually label these
locations by I..

* Any location t such that the exit condition Et(y) is nontrivial is called a semaphore loca-
tion. Examples or such locations are those corresponding to the instruction requeet(v,)

* whose transition diagram is:

- % .

.. .. 4 .
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Note that Et(y) - (y, > 0). The request instruction is used in order to reserve a
resource, where y, may be considered as counting the number of units of this resource
currently available. Its symmetric counterpart, the release(y,) instruction, is used to
release a reserved resource. Its transition diagram is:

true- [y,: Y, +l

The release instruction has as its exit condition E - true. Consequently its location
is a regular location.

A state of the program P is a tuple of the form a = (;7) with E Li X ... X L. -and

7 E D", where D is the domain over which the program variables y, , y. range. The vector ?
is the set of current locations which are next to be executed in each of the processes. The vector
17 is the set of current values assumed by the program variables Vi at state a.

With each process P we associate a state transition function g that represents the possible
outcomes of the activation of the process Pi on the state a. If we denote by S the set of all possible
program states, gi is a function gi : S - 2

Note that this definition allows for the possibility that P is nondeterministic, since it is possible
that Ig(s)l > 1, i.e., there is more than one successor to a. Let 8 = ( ;fl). If ti is a terminal
location, or a semaphore location with EI,(iU) =false, then Pi cannot be activated on a. In such
a case gi(s) 4) and we say that Pi is disabled on s. If ti is a regular location, or a semaphore
location with E(i) = true then gi(s) 34 4 and we say that Pi is enabled on 8.

A state a E S such that all processes are disabled on 8 is called terminal. A terminal state
corresponds either to a situation in which all processes have terminated or to a deadlock in which
all the nonterminated processes wait in a semaphore location with a raise exit condition.

An admissible computation is a labelled (possibly infinite) sequence:
P,, P,12  P 3

: so - 01 .2 s ...

such that every s E S and for every j _ 0, we have sj+i E gi,+j1 s3 ). Thus, such a
computation could arise by an execution of the program starting from the initial state so.
The computation will be finite only if it terminates in a terminal state s,. We can think
of such a computation as generated under the guidance of an imaginary scheduler which
at each step selects one or the processes (called the activated or scheduled process) and lets
it execute a single instruction.

Z A -initialized computation is an admissible computation in which so - (,.. . , to; fo( ).
Ilere to is the initial location in process i and fo is the initial assignment to the program
variables.

e A i-computation is a -initializcd computation or a suffix of a Z-initialized computation.
Allowing suffixes of initialized computations enables us to study program behavior which
may become observable only later in the computation.

* A so-computation is a -computation for any input values t satisfying a precondition (o.

The next definition embodies the basic assumption or fairness:
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An admissible computation a is fair if there is no process P such that P is enabled an infinite
number of times in o, and P is activated only finitely many times. Thus, fairness requires the
imaginary scheduler to monitor the number of times a process becomes enabled, and to ensure that
repeatedly enabled ones are not neglected forever. Any finite computation is necessarily fair.

In the absence of semaphore instictions, each process Pi is initially enabled and can become
disabled only by terminating. Hence we can define the weaker notion of just computation, which
replaces the requirement of being enabled an infinite number of times by the requirement of being
continuously enabled.

A computation a is just if there is no process Pi such that P is continuously enabled beyond
a certain state a in a, and P is activated only finitely many times. Any finite computation is by
definition just.

We denote the classes of all fair and just computations of a program P with precondition (P

by J(so, P), J(,, P) respectively, or Jr(P), J(P) when the precondition V is implicitly understood.

For an arbitrary program P we have in general

7(P) C J(P),

i.e., every fair computation is also just, but there may exist just computations which are unfair.

To see that the first claim holds, let a be a fair computation. Let Pi be any process that is
continuously enabled beyond a certain state in a. Thus, P is certainly enabled an infinite number
of times, and by fairness must be activated an infinite number of times. Hence a is just.

To show that the inclusion between the sets 7(P) and J(P) may be strict consider the following
program which is the simplest program modelling mutual exclusion:

to: reque.t(y) ino: request(y)

11 releaae(y) m,: release(7/)
t2: gO to tO m 2 : go to MO

-P, - -P 2 -

The following computation:

P1  P, PA

P P
(O, M O; 1) --(t,MO;) MO

is just. The process Pi is activated inflnitely many times. On the other hand P2 is never

continuously enabled since it is disabled in the infinitely recurring state (ti, mo; 0), therefore justice

does not require it to be activated at all. Obviously a is unfair since P2 is also enabled infinitely
many times on all recurrences of (10,mo; 1), but is never activated.

However when P contains no semaphore instructions we may use the above observation that
a process is continuously enabled if and only if it is enabled infinitely many times, to conclude:

For a program without semaphores: 7(P) = J(P).

6
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Thus, in order to study programs without semaphores, we need only consider properties that hold
I for the class of all just computations.

PROGRAMS WTTIIOUT SEMAPHORES - JUST COMPUTATIONS

In this section we present a proor principle enabling us to prove eventuality properties that
hold for the class of just computations J(P).

The basic idea or the proof principle is to assign a convergence function u : S - W mapping
the program states into a well-founded structure W. However, as shown in examples such as the
DGCD program above, we should not require the function to decrease at every step. Instead we
require that the function never increases and Lhat for each state there is always a process Pi, ,' ,lled
the helpful process for this state, such that the activation of this process guarantees a decrease 5
in the value of the function. By justice this helpful process will eventually be scheduled, so that
any infinite just computation will necessarily generate an infinitely decreasing subsequence of well-
founded elements - a contradiction. In the general case, the identity of the helpful process may
vary from state to state. We therefore introduce a helpfulness function h S - {1, ... ,m} that
identifies one helpful process Ph(.) for each state 8 E S.

We suggest the following proof method for proving precedence and eventuality properties of
juPt. computations.

Proof Method J:

For proving eventualities of the form o -0 Ob, under all just computations of a
program P, find a state predicate Q - Q(s), a well-founded structure (W, >-), a
convergence function u : S -- W and a helpfulness function h S - {1, ... ,m}

such that:

JI. i (0 V Q)

J 2. In 0 ) (gh( )( ) 34 -0)

J3. Is [Q(s) A 8' E gi(s)] [ [P(s') V (Q(s') A (u(s) u(s')))]
for i 1, ... ,m

J4. In [Q(s) A s' E gh(.)(8)] [O(') V (u(s) >- u(8'))]

J5. IsIQ(s) A a' E g,(s) A (u(s)= u(s'))] [(s') v (h(s)= h(s'))!
fori= I, ... ,m.

Then we may conclude that:

Here in to means that in is true for all computations or P. The statement J(11) I to means that to
is true for all just computations or t,.

7



In these, Q(s) is an invariant which is expected to remain true from the time (p becomes true
until 0 is realized. Requirement J I states that ir o holds for a state then either 0 or Q must hold
in this state. J2 requires that the process that is helpful for a state 8 be enabled on S. J3 states
that each step in the computation either realizes 0b or preserves Q and produces a value of u that
is not higher than the value before the step. J4 states that taking a helpful step actually decreases
the value of u. J5 states that a step which does not decrease tie value of u must preserve the
identity of the helpful process. Tie last condition is necessary in order to avoid all infinite sequence
with constant value of u and continuously changing h. Such a sequence may be just but yet avoid
realizing b.

Proof.

Let us justify this proof method by showing that if we succeed in finding Q, W, u and h as
described above then indeed every just computation must satisfy V D ib.

Let us consider a just computation:
AS Pi 2

or 80 1 11 8X . .

such that 'p(so) is true and 0 is nowhere realized. By J1 and J3, Q(si) must be true for every s.
in the sequence. By J2 the sequence must be infinite since, for every s,, Ph(5 ,) is enabled. Again
by J3 the sequence of u values u(so) u(sl) >" ... must be a non-increasing sequence. By the
well-foundedness of W there must be a k such that

U() = =..

By J5, h also remains constant from ak on, that is

h(s,) = h(Sk+ =

Let its constant value be r - h(sk). In view of J4, P was never activated beyond sk because
its activation would have caused u to decrease. In view of J2, P is continuously enabled beyond
sA since everywhere h(s) = r for i > k. This is obviously a blatant case of injustice - I-, being
continuously enabled and never activated. Thus, just sequences failing to realize 0 cannot exist,
and any just sequence initialized with Vo must eventually realize V). I

By looking at the proof for eventualities we observe that it guarantees the eventual realization
of 0 and, by J I and J3, as long as 0 is not realized, Q holds. This is exactly the definition of the
until expression Q U 4. We therefore have:

Corollary: The proof method J also proves

AMP I. (o D (Q U 0b).

The treatment in [LPSI implies that this method is also complete, namely that if 'P D 4 k is
true for all just computations of I' then there always exist some Q, W, u, and h satisfying JI - J5.

Related work dealing with similar methods for establishing fair termination, which is a special
case of eventuality, is contained in [GFMR], [AOJ and ['a]. Earlier work on the termination of
concurrent programs is described in [K], [Pn].

We will now proceed to illustrate the application of this method to proofs or eventuality
properties or programs without semaphores.

8



sgz'ampke A (Program DGCD -- distributed gcd computation):

Consider again the DGCD program. Let

.91

t: a to A atmo A (Y1,lY2))=(z1,X2) A xj>0 A Z2>0

and

i"': atto A atm o A Y Y-2 =gd(xi,z 2 ).

We wish to prove

LC.

" (P) 0 [atto A atmo A (Y/1,1Y2) =(X 1,2 2) A zi > 0 A X2 > 01
D 0[atto A atmo A YI = Y2=gct 1,,X2)].

That is, being at the starting point of the program with (Y1, Y2) = (XI,X 2 ) and positive inputs
z 1 > 0, Z2 > 0, we are guaranteed to eventually get back to that point with Yj being the greatest
common divisor of x1 ,X 2.

We choose Q, W, u, and h as follows:

Q(s): atto A atmo A yi > 0 A 12 > 0 A gcd(1/l,Y 2 ) = gcd(x.,X 2 ) A Y1 / Y2

W : (N, >) - the nonnegative integers with the "greater than" relation

u(yl, Y2 ): 11 + Y2

h(yi, Y2 ) : if 1 > Y12 then P else P2

We have intentionally displayed h as a function into {P 1 ,P 2 } rather than {1, 2} to stress the fact
that it selects processes. It is not dillicult to verify that requirements JI to J5 hold for this choice
or Q, W,u, and h. In particular, we note that Q implies that when y1 > Y2, PI is helpful in
decreasing y + Y2 while for yj < 112 (by Q : y < 112) P2 is helpful. Note that once we are at
(to,mno) with 111 = 12 the program will immediately proceed to the termination state at (tl,mi).

AN INDEXING METHOD FOR JUST COMPUTATIONS

A variant of the convergence function approach uses elements of well-founded sets as indices to
predicates. As we will show below the two variants are essentially equivalent, but certain problems
may admit proofs that are easier to present in the indexed form than in the convergence function
form. As before, the method is based on finding a well-founded set (V, >-). We then consider
predicates R(s) with v E V, a E S which are state predicates indexed by elements of V. States
appearing later in the computation will satisfy R,, with lower values of v. Convergence is therefore
assured by the impossibility of having a sequence of 14, with an infinitely decreasing values of vi.
However, as before we cannot guarantee a strict decrease on every step. We therefore specify a
decrease function 6 V -* (I, . .. , m} which, similarly to the helpfulness function h, identifies the

- " - " - ~~.......... .... . . •



helpful process P6(.) that corresponds to any state s satisfying R,,(s). Note that the identity of the
helpful or decreasing process depends only on the index v and not on the state.

With this notation we now formulate the indexing method for just computations. 0

Proof Method IJ:

For proving eventualities of the form 0 i Qp, under all just computations of a
program P, find a well-rounded structure (V, >-), an indexed family of predicates
R, = R,1(s), v E V, and a decrease function 6: V - {1, ... ,m} such that:

IJ1. i n [41 V (3vV.R,)J

I J2. In R.(s) D (g6(,)(s) 34 0)

IS3. I [R.,(s) A 8' E gi(s)] D [0(8') V 3u(u " v).R,,(a')] for i = 1, ... m

UJ4. I [R(s) A s' E g(,)(s)J i [O(s') V 3u(u - v).R.(s')]

Then we may conclude that

J(P)l. 0

A stronger conclusion is:

J(P) 9=o D (3v.R) U1.

Requirements IJl-IJ4 resemble very closely J1-J4 and fulfill similar roles. There is no need

for a counterpart to J5 since if a satisfies R0 (s), s' E g1(a) and also R,,(') then the decreasing
process for s, being determined by v alone, is also the decreasing process for s'. The proof method
IJ appeared first in a structured form, applied to nondeterministic programs ([G1FMR).

The similarity between the methods suggest that they are in fact equivalent. Indeed we make
the following claim:

Method J is applicable if and only if method 1J ' applicable.

Proof.

Assume first that method J is applicable. This means that we have found Q, (W, >-), u and
h satisfying requirements JI to J5. To show that this implies the applicability of ii we choose as
follows:

The well-founded structure (V, >-v) is given by V = W X [1, ... ,m], where

(o ,i) >-v (W2J,) W 1i >-w W2 or (W = W2 and i > j).

Thus, an element of V is a pair (w,i) with w E W and I < i < m, and the ordering >-v is the
lexicographic ordering induced by the ordering on W and on the natural numbers.

R(,j)(s) is defined by Q(s) A [u(s) = w] A [h(s) -i

10
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and

6(w, i) = i.

It is an easy matter to verify the fulfilment of requirements IJ1 to IJ4. Consider for example
the verification of condition IJ3.

Let s, a' be two states such that R(,,,)(s) holds and a' E gi(s). By the definition of R we know
that Q(8) is true and u(s) = w, h(s) = j. By J3 either O(s') is true which immediately satisfies
1J3, or Q(s') holds and w = u(s) > u(s') = w'. Thus, by the definition of R, R(.I,h(8'))(s') is
true. It remains to show that (w,j) - (w, h(s)) >- (w', h(s')). If w >- w' then this is certainly the
case. Consider therefore the possibility that w = w'. But then by J5 also h(s) = h(s') leading to

(w, h(s)) = (w', h(s')) as required.

To go in the other direction assume that (V, >-), R, and 6 as required for method IJ have
been found. We will show how to select Q, (W, >-), u and h that will satisfy the requirements of
method J.

For simplicity we assume that the order >- is a total (linear) order. We may then take the
well-founded structure (V, >-) to be (W, >-). Q(s) is defined by 3v.R,(s) and u(s) is given by
min{v11,,(s)} for an s which satisfies Q and arbitrarily otherwise. If W is a total well-founded
order every non empty subset of W has a minimal element which is smaller than any other element
of the set. The helpful function h(s) is defined as 6(u(s)).

It is an easy matter to verify that Q,u, and h satisfy requirements J1 to J5. I

DIAGRAM REPRESENTATION OF THE INDEXING METHOD

In the case that the indexing set V is finite there is a convenient graph representation of the
indexing method. This is certainly the case when the program P has only finitely many possible
states.

In the graph or diagram representation there is a node n, for each R, v E V. Without loss of
generality we may assume V to be an initial segment of the natural numbers V = {1, 2, ... ,k}.
Thus we have nodes ni, i = 1, ... ,k. A special node no, represents 0. For every a E Ri, s' E Hi
(i.e. R(s) = R3(s') = true) such that s' E gt(s), we draw an edge e from ni to ni . The edge e is
labelled by Pe, the process effecting the transition. Similarly, for every a E Ri, a' E 1P such that
a' E gt(s) we draw an edge from n, to no and label it by P1.

In order for a diagram to represent a valid proof by method IJ the following conditions must
hold:

A. For every edge connecting ni to n- we must have i > j.

B. For every ni, i > 0, there must exist some PI (the helpful process) such that all
edges labelled by Pj lead from ni to some nj with i > j and such that PI is
enabled on all states a E Ri.

In the diagram we represent edges corresponding to the helpful process by double arrows =.

We illustrate diagramn proofs by two additional examples.

11



Ezample B (The Peterson-Fischer Algo,,khim (PF - a distributed solution of the mutual exclusion
problem):

Y: t:' Y := t2 : i

to noncritical section 1 - mo: noncritical section 2

,: tj:=ify2--FthenFelseT mi: t2:=ifyj=TthenFelseT

£g: J :=tl 12: p/2 :=t2

13 : ify2 _L thent :=y in: ifyp 3 _L thent2 :=-yt
£4: Y 1 :-t l  in 4 : 2 :=t2

15 : loop while V=, yi n 5 : loop while -= Y1

critical section I critical section 2
:=i (±,) (Y2, t2) : -l

£7: go to o m7: go to mo

-P1 - -P2

This program provides a distributed solution for achieving mutual exclusion without sema-
phores; the boxed segments are the critical sections to which we wish to provide exclusive access.
It is assumed that both critical and noncritical sections do not modify the variables y1 and Y2.
Also, it is mandatory that the critical section itself must terminate. The program is distributed in
the sense that each process Pi has itsown memory yi which is readable by the other but writable
only by itself.

The basic idea of the protection mechanism of this program is that when competing for the
access rights to their critical sections, P attempts to make yl = Y2 by the statements £1 to £4

while P2 attempts to make Y2 = "'Y1 in statements m, to M 4 . The synchronization variables yt
and Y2 range over the set (_l, F, T}, where .1 signifies no interest in entering the critical section.
The partial operator -, is defined by

-T =F, -F =T, - Lis undefined.

Hence in writing -'Y2 - Y we also imply that 1j 3 _L. and y2 # 1. Protection is assured
essentially by the exclusion of the entry conditions yl 3 Y2 and -'Y2 3 Y1 when both y and Y2
are different from _L, since yi 3 . when P is waiting to enter its critical section.

A point unique to this algorithm is that although P attempts to establish the condition Pt -
P2 in £i to 14, the condition for P1 actually entering the critical section is the complementary
condition yl Y Y2. Thus, if both processes actively compete for entry, P, sets yP equal to Y2

and then waits for the other process to set Y2 to a value different from yi. If P 2 is not currently
interested in gaining access to the critical section, then Y2 = I which will cause the statements
in ti to £4 to set yP to T; testing at t5, I', will find that indeed Pt = T 3 y2 = I and enter
immediately.

By simple application of the invariance principle it is possible to derive the following invariants:

S(t 1 7 ) --
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2. . .- atM2..6

N (V2 0 -) atM3..,

where ath1..5 stands for at12 V at13 V ... V att, etc.

The eventuality property we wish to show for this program is

in att 0 ato.

In Figure 1 we present a diagram proof for this property. In constructing the diagram we have
freely used the four invariants derived above. Observe in particular node number 6

6: tsmoo

in which the helpful process (indicated by a double arrow = ) is P1 since we know that Y2 = I.
In this diagram we abbreviate att5 A atmo to 4s,tmo.

To illustrate the application or method IJ to the proof of until properties, consider the following
precedence property:

is[at5 A - atm 4..SJ D [(- atms) U (att)].

It states that if P arrived at t5 before P2 arrived at any location in {m4,ms,M6) then P will
be admitted first to its critical section. To prove this we only have to consider the subdiagram
consisting of nodes 0 to 7. Certainly,

[at15 A -- atm4..s] D [R7 VReVRsVR 4 VR3].

Therefore this is an admissible diagram in the sense that condition IJ is satisfied. It establishes
that ats will eventually be realized and all the intermediate states are covered by Vj= Ri which
implies - atme. |

Example C (The Dekker program (DK) - a shared variable solution of the mutual exclusion
problem):

t: 1, V1 :=Y2 :F

to: noncritical section I mo : noncritical section 2

11: V :=T Mi: Y 2:=T

t2 : if y2 = F then go to t 7  M : if yj = F then go to M 7

t 3 : if t= I then go tot m3: ift = 2 thengo to r 2

14: Y11 :F M 4 : Y 2:=-F

t5 : loop until t 1 m5 : loop until t 2

46 : go to It ms: go tormj

17 : critical section 1 M 7 : critical section 2

t := 2 t:= 1
Is: 1 , :=F m : 1y 2:=F

.4: go to i Ing: go to o

-P, - -P2-

14
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The variable Yl in process P, (and V2 in PI. respectively) is set to 7' at ti to signal the intention
or P to enter its critical section at 17. Next P, tests at 12 whether P2 has any interest in entering
its own critical section. This is tested by checking if Y2 = T. If Y2 = F, P proceeds immediately
to its critical section. If Y2 = T we have a competition between the two processes on the access
right to their critical sections. This competition is resolved by using the variable t (turn) that has
the value I if in case of conflict P has the higher priority and the value 2 if P 2 has the higher
priority. If P1 finds that t = I it knows it is its turn to insist and it leaves yl on and just loops
between 12 and 13 waiting for Y2 to drop to F. If it finds that t = 2 it realizes it should yield to
P2 and consequently it turns Yl off and enters a waiting loop at ts, waiting for t to change to 1.
As soon as P2 exits its critical section it will reset t to 1 so P will not be waiting forever. Once t
has been detected to be 1, P sets y, to T and returns to the active competition at 12.

For the DK program we wish to show:

i at1 D Oat 7 .

In Figure 2 we present a diagram proof of this property. In constructing the proof we made use of
some invariants that are easily derivable, namely:

Is (yi = T) - (at 2.. 4 V att7 ,)

"l (Y2 =T) (atm 2 .. 4 V atm7 ,8 )

M (att3 ..6 A t 2) D atml...7.

For example, we used the last invariant in order to decide that at node 23 the P successors
to states in which att 4 A (t = 2) may be anywhere but at m 0 , ms or mng.

Again we may use the extension of the method in order to prove some precedence properties
of this program. First we can show:

M [art 2 ,3 A (t = 1) A - atm7 ] [(, atM7 ) U (att 7 ).

This is established by considering the subdiagram formed out of nodes no to nio. It ensures that
once P is in t2,3 with t = 1, it will precede P2 in getting to the critical section. An almost trivial
observation is that

In atm8  [(t = 1) U (att7 ).

In analyzing the anount of overtaking by which P2 can precede PI in entering the critical
section we find the following:

Once P is in tl it will eventually get to 12. If currently t = 1, then the next process to enter
its critical section is P1. Otherwise, in the worst case ll proceeds from t2 to t5. P2 cannot enter
its critical section more than once without setting t to 1. Once t = 1, P1 returns to t2 ensuring
its priority on the entrance rights to the critical section. A certain amount of overtaking, i.e., P2
entering its critical section several times before P1, may take place during the transition of I from
t5 to 12 . I

16



PROGRAMS WITH SEMAPHORES - FAIR COMPUTATIONS

Next we will consider programs with semaphore instructions. For such programs the classes
or just and fair computations do not coincide and we have to go back to consider the more general
concept or fair computations. Since always 7(P) g J(P), any property that has been proved
correct by method J certainly holds for all fair computations. However, the completeness of
method J breaks down in the case of programs with semaphores; we are not always guaranteed
that method J is applicable.

Hence, we propose a more general method for establishing eventuality properties under fair
computations:

Proof Method F:

For proving eventualities or the form 0 ,0 O , under all fair computations of a
program P, find a state predicate Q, a well-founded structure (W, >-), a convergence
function u : S --* W and a helpfulness function h : S -+ {1, ... ,m} such that:

Fl. ( (vQ)

F2. r(P - {Pk}) I= [Q(s) A h(s) =ki] D [0 V (gk(s) 34 q)]
for k=l, ...,m

F3. I [Q(s) A S' E g,(s)] D [,(8') V (Q(s') A (u(s) u(')))]
for i = 1, ... M

F4. I jQ(s) A a' E gh(8)(s)] D [4(s') V (u(s) >- u(s'))j

F5. I [Q(s) A ' E g() A (u(s) u(s'))] [a/(s') V (h(s) h(s'))]
for i =1, ... ,m.

Then we may conclude that
T'(P) I--

A stronger conclusion is:
T(P I- (Q U 0).

The requirement imposed by F2 is that under all fair computations of P - {Pk}, i.e., the

program consisting of all processes excluding Pk, if Q(s) holds and the helpful process is k then
eventually either 0 will be realized or gk becomes enabled.

The dilference between method " and method J is in the second requirement P2. While

J2 requires that the helpful process is enabled now, F2 only assures that it will be eventually
enabled. The apparent disadvantage of F2 in comparison with J2 is that while J2 (and all the
other requirements) are static, requiring only classical reasoning for their establishment, I2 is a
temporal requirement, having the same form as the conclusion we set out to prove: V D 0 ip. Two
obvious questions arise: how do we prove F2, and is there a danger of circular reasoning?

The answer to both questions lies in the prefix to the I= sign. Since our goal predicate in '2 is
dgh(s) 3 q6 which expresses the fact that Pk is enabled, we may omit from our considerations any

17



action or Pk, because such an action may be taken only when Pk is enabled, i.e., from a goal state.
Thus we can consider fair computations in which all the processes but Pk participate and show
that they eventually get to a state in which Pk is enabled. Consequently, we can study a simpler

program with one process less. The answer to the question of how to verify clause F2 is therefore
recursively by method F, but applied to a simpler program in which Pk is omitted.

To justify method F consider a fair computation:

P1  Pi.
or: 80  3 81 82  ...

such that VO(so) is true and 0 is never realized. By F1 and F3, Q(si) must be true for every si i5 the
sequence. By F2 the sequence must be infinite, since it implies that either already gk(s1 ) : 0 and
the sequence cannot stop there, or that there exists a future state s- for which 4 V (g ,(s ) 3 4).
Consequently si cannot be terminal. By F3 the sequence of values u(s 1 ), u(82), • • . satisfies

U(S) __ U(82) ... and by being well-founded it must eveniually stabilize, let us say at 8', i.e.,

,,(s,) = ,(8'+,). ..

From F5 this implies a constant value or the h function as well, i.e.,

= k.

Since the u value is constant beyond s,, Pk by F4 could not have been activated. Thus the
suffix sequence

Sri 8r+1, ...

is a fair computation of P - {Pk}. By F2, Pk must be enabled somewhere in it. By considering
higher suffixes we can establish that gk is enabled an infinite number of times but never activated.
Thus a must be unfair. l

In [LISJ it is proved that method F is complete for proving eventuality properties for the class

of all fair computations of a program.

AN INDEXING METHOD FOR FAIR COMPUTATIONS

Similarly to the case of just computations we can present a well-founded indexing variation of

the principle proposed above.

18
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Proof Method IF:

For proving eventualities of the form 0o <>0b, under all fair computations of a
program P, find a well-founded structure (V, >-), an indexed family of predicates
R, = R1,(s), v E V, and a decrease function 6 : V -+ {1, ... ,m} such that

fF1. in (it ' V v(+ EV).R.]

IF2. 7(P - {Pj()}) 1= R,,(s) D 0[ V (g(m(s) 3 0i

IF3. [R.(s) A s' E g1(s)] D [4O(s') V 3u(u -< v).R,(s)] for i - 1, ... ,m

IF4. JR,(s) A s' E g,5()(s)j D [O(s') V 3u(u < v).R,(s')J.

Then we may conclude that

A 7'(P) I =

A stronger conclusion is:

T(P) 1= D (3.R.) U 0.

Similarly to the previous case we can establish the equivalence between this method and the
one based on convergence functions. This variation lends itself easily to a diagram representation
in the finite state case.

We will proceed to illustrate the application of method F to proofs of eventuality properties

of programs with semaphores.

Ezample D (Program CP - consumer-producer):

b:=A, s:=l, cf:=O, ce:=N

to compute y2 mo: request(cf)

tL : request(ce) m,: request(s)

t2 :request(s) M2 : 22 head(b)

£3: t3 := b'y m 3 : t 2 := tail(b)

14: b:= t m4: b := t2

4 : release(s) m 5 : release(s)

6 : release(cf) m6 : release(ce)

t7 : go to o m 7 : compute using V2

mg : go to mo

-P 1 : Producer - -P2 : Consumer -

The producer P computes at to a value into yj without modifying any other shared program

variables. It then adds yj to the end of the buffer b. The consumer P2 removes the irst element

of the buffer into Y2 and then uses this value for its own purposes (at in7 ) without modifying any

other shared program variable. The maximal capacity or the buffer b is N > 0.

,410
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In order to ensure the correct synchronization between the processes we use three semaphore
variables: The variable s ensures that the accesses to the buffer are protected and provides exclusion
between the critical sections 13..5 and m2 ..5 . The variable ce ("count of empties") counts the number 0
of free available slots in the buffer b. It protects b from overflowing. The variable cf ("count of
rulls") counts how many items the buffer currently holds. It ensures that the consumer does not
attempt to remove an item from an empty buffer.

Here we wish to show that

is attj atts.

We start by presenting a top-level diagram proof:

Figure 3.

".

This diagram proof is certainly trivial. Everywhere, P is the helpful process and leads
immediately to the next step. However, we now have to establish clause IF2 in method IF. This
calls for the consideration of fair computations or P - {Pi} = P2 . We thus have to conduct two
subproofs:

T (P2) I= att1 * ~(ce >0)

7(P2) a at2 O(s > 0).

The first statement ensures that if P! is at tl, P2 will eventually cause ce to become positive which
is the enabling condition for P to be activated at tj. Similarly, in the second statement P2 will
eventually cause a to become positive, making P enabled at t2. For both statements we will
present diagram proofs.

Consider first the diagram proof for the atti case:

20



m e 4Figureo4.

In the construction of this diagram we use some invariants which are easy to derive. For
exam ple, we used

ate3 .5 + atrn 2 ..6 + 81

in order to derive that being at tj and at mn1 implies a > 0. In an expression such as the above
we arithmetize propositions by interpreting false as 0 and true as 1. As another invariant we use

cf + ce + Wt2 -~6 + atrn1 .6  N

in order to deduce that being at t4 and at Mn7,8 .0 implies that cither ce > 0 or cf > 0.

'T'he diagram proof for t2 is even simpler:

Figure 5.



Ezample E (Program 8C a distributed computation of the binomial coellicicnL):

ii :=n, Y2 :=O, i3:=1, Y4:-1

to : if i= (n - k) then go to 1. mo: iy2 "-k then go to n

j. i: request(l 4 ) "i : Y2 := 2 +1

t2 : ti :V/3 Vi 1 "M 2 : loop until / + Y2 < n
t3 : Y/3 :=tt M3: rcqueat(y4)

£4 releaSe(i 4) M 4 : t2 := 7//2
"I s Y1t := Y1e - 1M5 : V3a:- t2

Is to to to ma : releae(/4 )

4: halt m 7 : go to MO

me : halt

-P, - -P 2 -

This program computes the binomial coefficient () or integers n and k such that 0 < k < n.
Based on the formula

( n - (n-1).n )

process P successively multiplies Y/3 by n,(n- 1), ... , while P2 successively divides Y/3 by 1,2,
In order for the division at M 4 to come out evenly, we divide y/3 by Y/2 only when at least Y2 factors
have been multiplied into /3 by P1 . The waiting loop at m2 ensures this.

Without loss of generality we can relabel the Instructions in the program, as follows:

Program BC* - A relabelled version of the Binomial Coefficient Program:

yit :-=n, Y2 :-O, Y3 : 1, Y4 :' I

t7: if y = (n - k) then go tort nM3 : if y2 = k then go totml

t£ : requeat(N4 ) M2: Y2 := Y2 + 1

£1: 11 :I'-- Y 1 ing: loop until 7/i + Y2 < n

£4: Y/3 := tt ms : request(4)

13: releaae(y4 ) M,7 -: t2 := 7-3/2-

2 £2: 1:-l MO : Y:3-t2

tg: go to 17 mS: rclcaSe(4)

tL: halt M 4 : go to m3

ml: halt

-Pl - -P2 -

Here we wish to prove:

S(at(t,,ia) A (Y,,PY2,p,3 4)-(.,0,l,I)J ( 4tP1,,i),}.
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We apply method F with the following:

Q: [at 3 ..5 + atms..7 + 4 =1

SA [((n- k) + att 2 .. ) 5 y < n]

A [0 < Y/2 < (k-atm2 )]

A [atti fl = n - k)]

(W, >-): (N X N, >1..)

the lexicographically ordered domain of pairs of nonnegative integers

U(tm; YIY2): (y, + k -2, i + j)

h(w, V) :if atfi then P2 else P WIN

Obviously the label sequence was designed in such a way that every step that moves to the next
instruction will necessarily decrement u. This is so because the label sequence is always decreasing
except for the instructions which decrement yj and increment Y2. Changes in the y's have been
given the highest priority in the lexicographical ordering.

There are only two situations to be checked. First, when P1 is at te and P2 is at m9 we have
to show that the next step indeed decrements u. This is so because in such a situation we are
assured by Q that both Y2 <I k and yj = n- k hold, leading to Y1 + Y2 _ n, which means that the
next step leads to m 8 . Another point is to show that being at t6 guarantees that eventually Y4 will
become positive, by the actions of P2 alone. This is easily established by the following diagram,
supported by Q.

Figure 6.

CONCLUDING REMARKS

When compared with the chain reasoning approach, the convergence function approach ap-
pears to provide a more concise representation or a finished proor of an eventuality property.
IHowever it may at times reveal less intuitive insight into the reasons the program is correct and
certainly offers very little guidance for the design of correct programs. According to whether one

is interested in a post analysis or a proof-guided synthesis of programs, one approach should be
preferred to the other.

The methods described here extend and elaborate the methods for proving convergence sug-
gested in I'S|. It is possible to prove completeness of the methods proposed here by an appropriate
extension of the completeness proof presented in [I''s].-
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Closely related approaches but concentrating on nondeterministic rather than concurrent
programs are described in [AOl and [GFMR1.
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